
Exploiting Repeated Behavior Pattern and Long-term Item dependency for
Session-based Recommendation

Abstract

Session-based recommendation (SBR) is a chal-
lenging task, which aims to predict users’ fu-
ture interests based on anonymous behavior se-
quences. Existing methods for SBR leverage pow-
erful representation learning approaches to encode
sessions into a low dimensional space. However,
all the existing studies focus on the item tran-
sitions in the session, without modeling the be-
havior patterns, which are strong clues to cap-
ture the preference of users. Further, the long-
term dependency within the session is neglected
in most of the current methods. To this end, we
propose a novel Repeat-aware Neural Mechanism
for Session-based Recommendation (RNMSR).
Specifically, we introduce repeated behavior pat-
tern into SBR, which contains the potential intent
information and critical item frequency signal. Fur-
thermore, we also built a similarity-based session
graph based on long-term dependencies within a
session. Extensive experiments conducted on two
benchmark E-commerce datasets, Yoochoose and
Diginetica demonstrate our proposed method out-
performs the state-of-the-art methods consistently.

1 Introduction
Recommendation system is an important tool to alleviate the
information overload in various applications domains, e.g., e-
commerce and social media. Conventional recommendation
methods [Mnih and Salakhutdinov, 2008; Kabbur et al., 2013;
Hsieh et al., 2017] usually heavily rely on user historical in-
teractions, where information about users and items is essen-
tial. However, user identification is inaccessible in many re-
cent real-world scenarios (e.g., unlogged-in user) where only
limited interaction of an ongoing session is available. Conse-
quently, session-based recommendation (SBR) has attracted
extensive attention recently, which predicts the next inter-
ested item based on a given anonymous behavior sequence
in chronological order.

Due to its highly practical value, SBR has attracted in-
creasing attention and many kinds of approaches have been
developed. The early studies of SBR are based on Markov
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Figure 1: Example.

chain [Shani et al., 2005; Rendle et al., 2010], which in-
fers all possible sequences of user choices over items and
may suffer from intractable computation problem when the
number of items is large. Recently, neural networks have
been extensively investigated into SBR, most of which have
highlighted the importance of using Recurrent Neural Net-
works (RNNs) [Hidasi et al., 2016; Li et al., 2017; Wang et
al., 2019e; Wang et al., 2019c; Kang and McAuley, 2018;
Wang et al., 2019b] and Graph Neural Networks (GNNs)[Wu
et al., 2019; Xu et al., 2019; Li et al., 2016]. Although many
existing methods have achieved exciting performance, none
has focused on repeat consumptions, which not only exists
but also accounts for a large proportion of the interactions in
many recent real-world scenarios, such as regularly eat at a
restaurant or frequently listen a list of songs.

To the best of our knowledge, RepeatNet [Ren et al., 2019]
is the only work that explicitly considers repeat consumption
with neural networks for SBR, which predicts the users’ re-
peat behaviors, but fails to capture item frequency (IF) infor-
mation, which has been proven that is more important than
repeated purchase pattern [Hu et al., 2020]. Furthermore,
RepeatNet [Ren et al., 2019] cannot effectively to capture the
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long-range dependencies of items within a session, which has
also been mentioned in [Liu et al., 2018] that is of great im-
portance for SBR. Without loss of generality, we take Figure
1 as an example for illustration. In Figure 1a, we show the toy
example of converting session into repeated behavior pattern.
And from Figure 1b, we can observe that, different sessions
may belong to same repeated behavior pattern. As compared
“Pattern 3”, sessions with “Pattern 1” is more likely to lead
to a re-consumption action, while sessions with “Pattern 3”
is more likely to result in a new item purchase. From the ob-
servation, it is meaningful to construct the behavior relevance
between different sessions, which can obtain a more accurate
discriminate function of predicting the latent re-consumption
intent for a given session. Furthermore, from Figure 1, the
item frequency (TF) contained in the repeated behavior pat-
tern is a critical signal for decision-making, in other words,
the higher TF is associated with a higher probability of the
corresponding item to appear in the next action within a same
session. For instance, users with “Pattern 1” are more likely
to re-consumed “item 1” and “item 3”, while users with “Pat-
tern 2” are more likely to re-consumed “item 1” and “item
2”. In conclusion, repeated behavior pattern is a strong tool
to connect the behavior relevance between different sessions,
which reveals the potential intent of user.

To address the above issues, we propose a novel GNN-
based method called RNMSR, which explicitly model the re-
peated behavior pattern and long-term dependencies of items
for SBR. Specifically, it learns item embeddings from two
module: (i) Repeat Module, which computes the probabil-
ity of each item in the session being re-clicked. (ii) Explore
Module, which computes the probability of new items being
clicked. The final prediction is decided by Discriminate Mod-
ule, which leverages multi-layer perceptron (MLP) to com-
pute the probability of executing Repeat Module and Explore
Module based on repeated behavior patterns.

The major contribution of this work are summarized as fol-
lows,

• We propose a unified model to explicitly model the re-
peated behavior patterns and long-term dependencies of
items for SBR.

• To the best of our knowledge, this is the first work to in-
troduce repeated behavior pattern information into SBR,
which contains the items frequency signal. To our best
knowledge, we are the first to present and analyze this
phenomenon for SBR.

• We propose a similarity-based session graphs which are
built by the long-term dependencies among items.

• The proposed method is evaluated on two benchmark e-
commerce datasets and its effectiveness and superiority
are demonstrated by extensive experimental results.

2 Preliminaries
In this section, the SBR problem is first formally defined,
and then introduce a behavior pattern, i.e., repeated behav-
ior pattern, which is used to measuring the probability of re-
clicking/-consuming items of the given session in the next
action.

2.1 Problem Definition
Let V = {v1, v2, ..., vm} be the set of all distinct items over
anonymous sessions, where each session is denoted by S =
{vs1, vs2, · · · vsn}, consists of a sequence of actions (e.g., an
item bought by a user) in chronological order, and vsi ∈ V
refers to the i-th interaction with session S, our goal is to
predict the next action vsn+1 for session S.

2.2 Repeated Behavior Pattern
Recently, repeated behavior is theoretically and empirically
studied in the filed of economics and psychology [Wang et al.,
2019a; Anderson et al., 2014; Hu et al., 2020], and has shown
considerable improvement in sequential/session-based rec-
ommendation [Ren et al., 2019; Hu et al., 2020]. Intuitively,
repeated behavior pattern mainly focuses on capturing item-
independent relations within the repeated behavior pattern,
rather than the item-related relations over original sessions.
For example, given two sessions, i.e., v1→v2→v3→v1→v3
and v4→v5→v6→v4→v6 correspond to the same repeated
behavior pattern 1→2→3→1→3. Hence, by following the
principle as in [Jin et al., 2020], we define it as follows,

Definition 1 (Repeated Behavior Pattern (R)). Given any
session S = {v1, v2, · · · , vm}, the repeated behavior pat-
tern indicates an anonymous sequence, which is defined as
follows,

R(S) = (N (S, v1),N (S, v2), · · · ,N (S, vm)), (1)

where N (S, vi) denotes the number of distinct items in ses-
sion S before vi that firstly appears in S, which is defined as
follows,

N (S, vi) = |{v1, v2, · · · , vp}|, p = minj{vj = vi}. (2)

3 The Proposed Method
In this section, we first present an overview of our proposed
GNN-based Neural Mechanism method RNMSR (shown in
Figure 2) in Section 3.1, which consists of four major com-
ponents, item representation learning, repeat module, explore
module and discriminate module, and then we will detail each
component.

3.1 Overview
The goal of the session-based recommendation problem is to
recommend the next item based on a sequence of items within
a given session S. Without loss of generality, the probability
of the next action given a session S is defined according to
the same principle as in RepeatNet [Ren et al., 2019],

Pr(v|S)← Pr(r|S) Pr(v|r,S) + Pr(e|S)P (v|e,S), (3)

where r and e denote repeat module and explore module,
respectively. Pr(r|S) and Pr(e|S) refer to the probability
of adopting repeat module and explore module, respectively.
Pr(v|r,S) and Pr(v|e, s) indicate the probability of recom-
mending v for session S in repeat module and in explore
module, respectively. We will detail them in the following
sections, respectively.
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Figure 2: An overview of the proposed framework. We first obtain the repeated behavior pattern from current session and construct a
similarity-based session graph. Then the item representations are learned by a GNNs layer. After that, the Repeat Module computes the
scores for repeated items based on repeated behavior pattern and the Explore Module compute scores for new items based on Attention
Networks. Finally, the Discriminate Module leverages repeated behavior pattern to compute weights for two kinds of scores and obtains the
combines scores for all items.

3.2 Item Representation Learning
Aforementioned, traditional RNN-based [Hidasi et al., 2016;
Liu et al., 2018; Ren et al., 2019] or GNN-based methods
[Wu et al., 2019; Qiu et al., 2019] usually make use of adja-
cent relations for modeling item relevance, which fail to con-
sider the long-term dependencies among items, and thus eas-
ily involved irrelevant information due to the uncertainty of
user intents in the session. Hence, here we propose a simple
similarity-based session graph model to capture the long-term
relations of items.

First, we use an embedding layer to project each item v ∈
V into a low dimension latent space and the node vector h ∈
Rd is the corresponding d-dimensional vector,

hi = Embeditem(vi), (4)

where vi is the corresponding one-hot encoding and
Embeditem is the embedding layer for items.

Similarity-based Session Graph. For any session S, let
Gs = (Vs, Es) be the corresponding directed session graph,
where vi ∈ V and eij ∈ Es denote each node and each edge
in Gs, respectively. Here, we adopt cosine similarity (simi-
lar to [Wang et al., 2020a]) to measure the relevance between
two items within session S, i.e.,

eij =
hi · hj

|hi||hj |
, (5)

where hi ∈ Rd denotes the d-dimension embedding of node
vi. For filtering noise, here we only remain the edges when
eij > η (η is a hyper-parameter). And Gs is a directed graph
as we use N left

i and Nright
i denote the left neighbor set (i.e.,

in-link) and right neighbor set (i.e., out-link), respectively.

Item Representation Learning. Based on the built
similarity-based session graph, a mean pooling based GNNs
layer is proposed to handle two types of neighbors of each

item vi, the representations (i.e., Nleft
i and Nleft

i ) of such
two types of neighbors are generated by using Mean Pooling,
e.g., Nin

i = MeanPooling(hv∈Nin
i
). The new representation

is learnt by a fully connected layer,

hN
i = tanh

(
Wshi +WN [Nleft

i ||Nright
i ] + bN

)
, (6)

where WN ∈ Rd×2d,Ws ∈ Rd×d and bN ∈ Rd are train-
able parameters.

To reduce the transmission loss, we also use residual con-
nection [He et al., 2016],

h′i = hN
i + hall

i + hi, (7)

where hall
i is an overall representation learnt by mean pool-

ing (i.e., hall
i = MeanPooling(hv∈N left

i ∨Nright
i ∨vi)).

3.3 Repeat Module
The repeat module predicts the possibility of items in the ses-
sion being re-clicked. As mentioned in [Hu et al., 2020], item
frequency (IF) is a critical signal for SBR to make correct
recommendation and the higher IF is associated with a higher
probability of the corresponding item to be the next clicked
item. Hence, we consider to utilize the item frequency to
strength the representation of items for improving the accu-
racy of calculating the re-clicked scores of items within the
given session.

Repeated Behavior Pattern Learning. Here, we first con-
vert each session S into the repeated behavior pattern accord-
ing to Definition 1. Given a session S, each repeated behav-
ior patten R(S) is encoded into an unique one-hot encoding
uR(S), and then is projected into an unified low dimensional
vector using a simple embedding layer, that is,

uR(S) = Embedpattern(uR(S)), (8)
whereEmbedpattern denotes the embedding layer for encod-
ing repeated behavior patten; and uR(S) is the representation
of session S’s repeated behavior pattern.



Next, we use a trainable reversed position matrix P =
{p1,p2, · · · ,pn} to encode the position of each item of ses-
sion S into a vector according to [Wang et al., 2020b], where
p1 is the vector of the first position and corresponds to the last
item hn in the session sequence. Here we learn the impact of
behavior pattern on different positions by a fully connected
layer,

mi = tanh(Wm[pi‖uR(S)] + bm), (9)

where Wm ∈ Rd×2d and b ∈ Rd are trainable parameters.
Then we integrate the learnt impact vector with item features,
the score of each item being re-clicked is computed as fol-
lows,

scoresri = qT
r tanh(Wrh

′
i +Urmn−i+1 + br), (10)

where Wr,Ur ∈ Rd×d and qr,br ∈ Rd are trainable pa-
rameters. Finally, the probability of each item is obtained by
normalizing through the softmax function:

P (vi|r,S) =
exp (scoresri )∑

vk∈S exp (scoresrk)
, (11)

3.4 Explore Module
The explore module predicts the possibility of items that do
not appear in session being clicked. In explore module, a
session-level representation is learned to model the main pref-
erence of users. As each item in the sequence has different
importance to the current session, we utilize attention mech-
anism to learn the importance weights for each item based on
reversed position vectors,

αi = qT
e tanh(Weh

′
i +Uepn−i+1 + be), (12)

where We,Ue ∈ Rd×d and q,be ∈ Rd are trainable pa-
rameters. Then we adopt softmax to normalize the impor-
tance weights and the session representation is computed by
weighted sum of each item’s features,

αi = softmax(αi)

se =
∑
i

αih
e
i

s′e = tanh(Wsse + bs) + se,

(13)

where Ws ∈ Rd×d is a trainable parameter and we employ a
fully connected layer with residual connection to enhance the
nonlinear ability of the model.

Based on the learnt session representation s′e, the score of
each item is computed by inner product between s′e and its
own features. Then softmax function is used to normalize the
scores,

scoresei =

{
−∞ vi ∈ S

s′e
T
vi vi ∈ V − S

P (vi|e,S) =
exp(scoresei )∑m
k=1 exp(scores

e
k)
,

(14)

where −∞ denotes negative infinity.

3.5 Discriminate Module
The discriminate module computes the probability of execut-
ing repeat module and explore module. Different from [Ren
et al., 2019] which entirely relies on item features, we incor-
porate behavior pattern information to enhance the model’s
ability to grasp the regular habits of users. First we apply
self-attention [Vaswani et al., 2017] to learn the importance
of each item and obtain a fixed-length representation,

βi = softmax(qT
d tanh(Wdh

′
i + bd))

sd =
∑
i

βihi,
(15)

where Wd ∈ Rd×d and qd,bd ∈ Rd are trainable parame-
ters. Then we use an L-layer Multi-layer Perceptron (MLP)
to extract the latent condensed features from behavior pattern
information and item features,

z = [uR(S)||sd]
zL =M(M(· · ·M(z))) =ML(z),

(16)

whereM(z) = σ(Wz + b) is a fully-connected layer. The
probability distribution is learned by softmax regression,

[P (r|S), P (e|S)] = softmax(WpzL), (17)

where Wp ∈ R2×d is a learnable transform weight,
P (r|S) and P (e|S) are two scalars (i.e., weightrepeat and
weightnew in Figure 2) represent the probability of execut-
ing repeat module and explore module, respectively.

3.6 Optimization
The output prediction probability for each item can be com-
puted as follow,

P (vi|S) = P (r|S)P (vi|r,S) + P (e|S)P (vi|e,S). (18)

Our goal is to maximize the prediction probability of the
ground truth item, the loss function is defined as the cross-
entropy of the prediction results:

L = −
|V |∑
i=1

yi log(P (vi|S)), (19)

where y denotes the one-hot encoding vector of the ground
truth item.

4 Experiments
In this section, we first introduce the experimental settings.
Then we compare the proposed RNMSR with various base-
line methods, and make detailed analysis on the experimental
results.

4.1 Experimental Settings
Datasets
To evaluate the performance of our method, two representa-
tive benchmark datasets are employed, namely, Diginetica1

1http://cikm2016.cs.iupui.edu/cikm-cup/



Table 1: Statistics of the used datasets.

Dataset Diginetica Yoochoose 1/64 Yoochoose 1/4
# clicks 982,961 557,248 8,326,407
# items 43,097 16,766 29,618
# train sessions 719,470 369,859 5,917,745
# test sessions 60,858 55,898 55,898
avg. len. 5.12 6.16 7.42

and Yoochoose2. The Diginetica dataset comes from CIKM
Cup 2016, containing anonymous transaction data. The Yoo-
choose dataset is obtained from the RecSys Challenge 2015,
which consists of six mouths click-streams of an E-commerce
website.

We conduct the same preprocessing steps as [Wu et
al., 2019] over two datasets. Since the training set
of Yoochoose is extremely large, following [Wu et al.,
2019], we use the most recent portions 1/64 and 1/4 of
the training sequences, denoted as ”Y oochoose1/64” and
”Y oochoose1/4” datasets, respectively. The statistics of pre-
processed datasets are summarized in Table 1.

Evaluated Methods
To evaluate the performance for session based recommenda-
tion, we compare our proposed method with multiple base-
lines including several state-of-the-art models: (1) POP: A
simple method which directly recommends the most popular
items in the training set. (2) Item-KNN [Sarwar et al., 2001]:
A item-based collaborative filtering algorithm that recom-
mends items similar to the historical items. (3) FPMC [Ren-
dle et al., 2010]: A personalized Markov chain model that uti-
lizes matrix factorization for session based recommendation.
(4) GRU4Rec [Hidasi et al., 2016]: A RNN-based neural net-
work mechanism which uses Gated Recurrent Unit to model
the sequential behavior of users. (5) NARM [Li et al., 2017]:
A hybrid model which improves the GRU4Rec by incorpo-
rating an attention mechanism into RNN. (6) STAMP [Liu
et al., 2018]: An attention-based deep learning model which
mainly uses the last item to capture the short-term interest
of user. (7) RepeatNet [Ren et al., 2019]: A state-of-the-art
GRU-based method which proposes a repeat-explore mecha-
nism to model the regular habits of users. (8) SR-GNN [Wu
et al., 2019]: It employs a gated GNN layer to learn item em-
beddings, followed by a self-attention of the last item to ob-
tain the session level representation. (9) GCE-GNN [Wang
et al., 2020b]: A state-of-the-art GNN-based model that ad-
ditionally employs global context information and reversed
position vectors.

Evaluation Metrics
We adopt two widely used ranking based metrics for session-
based recommendations: P@N and MRR@N by follow-
ing previous work [Wu et al., 2019]. The P@N score indi-
cates the precision of the top-N recommended items. The
MRR@N score is the average of reciprocal rank of the
correctly-recommended items in the top-N recommendation
items. The MRR score is set to 0 when the rank of ground-

2https://competitions.codalab.org/competitions/11161

Table 2: The performance of evaluated methods on three datasets.

Method
Diginetica Yoochoose 1/64 Yoochoose 1/4

P@20 MRR@20 P@20 MRR@20 P@20 MRR@20
POP 1.18 0.28 7.31 1.69 1.37 0.31

Item-KNN 35.75 11.57 51.60 21.81 52.31 21.70
FPMC 22.14 6.66 45.62 15.01 51.86 17.50

GRU4Rec 30.79 8.22 60.64 22.89 59.53 22.60
NARM 48.32 16.00 68.37 28.87 69.73 29.23
STAMP 46.62 15.13 68.74 28.67 70.44 30.00

RepeatNet 48.49 17.13 70.06 30.55 70.71 31.03
SR-GNN 50.73 17.59 70.57 30.94 71.36 31.89

GCE-GNN 54.22 19.04 70.90 31.26 71.40 31.49
RNMSR 54.66 20.00 72.11 33.01 72.22 33.43

truth item exceeds N . In this paper, we set N = 20 for both
P@N and MRR@N.

Implementation Details
Since the amount of distinct repeated behavior patterns grows
factorially with the length of session, we obtain the repeated
behavior patterns from the last 6 items of each session. Fol-
lowing previous methods [Liu et al., 2018; Wu et al., 2019],
the dimension of the latent vectors is fixed to 100, and the
size for mini-batch is set to 100. And we keep the hyper-
parameters of all evaluated methods consistent for a fair com-
parison. For our model, all parameters are initialized with a
Gaussian distribution with a mean of 0 and a standard devi-
ation of 0.1. We use the Adam optimizer [Kingma and Ba,
2014] with the initial learning rate 0.001, which will decay
by 0.1 after every 3 epochs, and the L2 penalty is set to 10−5.
To avoid overfitting, we adopt dropout layer [Srivastava et
al., 2014] after the embedding layer of items (i.e., Equation
4). The dropout ratio is searched in {0, 0.25, 0.5} and thresh-
old η is searched in {0, 0.1, 0.2, · · · , 0.9} on a validation set,
which is a random 10% subset of the training set.

4.2 Experimental Results
The experimental results of all baselines and our proposed
method are reported in Table 2, where the best result of each
column is highlighted in boldface.

From Table 2, we observe that RNMSR consistently out-
performs both traditional methods and neural network meth-
ods on three datasets in terms of the two metrics. The exper-
imental results demonstrate the effectiveness of our proposed
method. To better understand the performance of different
models, we present thorough discussions as follows.

Among the traditional methods, the performance of POP
is relatively poor, as it ignores the preference of users and
simply recommends top-N popular items. FPMC performs
better than POP over three datasets, which shows the ef-
fectiveness of using first-order Markov Chain to model ses-
sion sequences. Comparing with POP and FPMC, Item-KNN
achieves better performance by computing the similarity be-
tween items, which indicates the importance of co-occurrence
information. However, it cannot capture the sequential tran-
sitions between items due to the fact that it fails to capture



chronological orders in the sessions.
Different from traditional methods, deep learning-based

baselines obtain better performance over all datasets.
GRU4Rec is a RNN-based method for SBR, which is able
to achieve similar or better results than traditional methods.
This result demonstrates the strength of RNN in modeling
sequential data. However, GRU4Rec is incapable of cap-
turing the user’s preference as it merely regards SBR as a
sequence modeling task. The subsequent methods, NARM
and STAMP significantly outperforms GRU4Rec over three
datasets. NARM explicitly captures the main preferences of
users and STAMP utilizes attention mechanism to consider
user’s short-term preference, which lead them to perform bet-
ter than GRU4Rec. By considering the repeat consumption
patterns of users, RepeatNet outperforms traditional methods
and other RNN-based methods, which shows the importance
of modeling users’ regular habits. However, the improvement
is still marginal as shown in Table 2, which may be caused by
two reasons: it is insufficient to model the repeat consumption
behaviors only based on item features, and RNN-based archi-
tecture can not capture the collective dependencies within the
session.

By converting every session sequence into a subgraph and
ecoding items within the session via GNNs, SR-GNN and
GCE-GNN achieve better results than RNN models. Specifi-
cally, SR-GNN employs a gated GNN layer to learn the col-
lective dependencies within the session, and GCE-GNN ex-
plores the global context of each item from the transitions
in all training sessions. However, these two methods neglect
the regular habits of user and the underlying frequency sig-
nal in repeated behavior patterns. Moreover, the constructed
session graphs are unable to capture the long-range depen-
dencies within the sessions.

Our proposed RNMSR model outperforms all the base-
lines. Specifically, RNMSR outperforms the best result
of baselines by 0.8%, 1.7%, 1.1% in terms of P@20 and
5.0%, 5.6%, 6.1% in terms of MRR@20 on three datasets re-
spectively. RNMSR explicitly models the regular habits of
users through repeated behavior patterns, which highly im-
proves the performance of the method. Moreover, the pro-
posed similarity-based session graphs enable the RNMSR to
capture the long-range dependencies in the sessions without
introducing noise.

4.3 Ablation Study
To investigate the effectiveness of repeated behavior pattern
and similarity-based session graphs, we conduct the follow-
ing ablation studies as stated in table 3. In (1), we remove the
GNN layer from RNMSR and use the original item features.
In (2), we construct the session graph as previous studies [Wu
et al., 2019; Xu et al., 2019]. In (3), we remove the repeated
behavior pattern from repeat module. In (4), we remove the
repeated behavior pattern form discriminate module. In (5),
we remove the repeated behavior pattern learning layer from
RNMSR. In (6), the overall RNMSR model is presented.

From the results presented in table 3, we have the follow-
ing observations. First, from (1) and (4), the results show that
the proposed GNNs layer is powerful to extract features from
sessions and can improve the performance of model. Sec-

Table 3: The ablation study. SSG denotes the similarity-based ses-
sion graph, and RBP denotes the repeated behavior pattern.

Method
Diginetica Yoochoose 1/64

P@20 MRR@20 P@20 MRR@20
(1) w/o GNN 53.06 19.82 71.08 32.37
(2) w/o SSG 54.26 19.94 71.78 32.73
(3) w/o RBP-r 54.34 19.40 71.94 32.48
(4) w/o RBP-d 54.18 18.86 71.91 32.36
(5) w/o RBP 54.14 18.38 71.90 31.72
(6) RNMSR 54.66 20.00 72.11 33.01
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Figure 3: The impact of threshold η.

ond, the comparison between (2) and (4) indicates that us-
ing our similarity-based session graphs can slightly improves
the model performance, which demonstrates the superiority
of our similarity-bsed session graphs. Lastly, by comparing
(3) - (5) and (4), we can observe that incorporating repeated
behavior pattern can highly improve the performance, espe-
cially in terms of MRR@20. It confirms the strength of re-
peated behavior pattern to model the habits of users.

4.4 Impact of Hyper-parameters
The hyper-parameter η is important when constructing the
similarity-based session graphs in the feature space. Thus,
we conduct experiments to evaluate the impact of η on the
proposed method. 3

The MRR@20 results are shown in Figure 3. We can ob-
serve that when the η is close to 1, the performance of RN-
MSR becomes worse on both datasets, as there are few neigh-
bors for each item. And the model does not perform well
when η is set close to 0 on Diginetica dataset because there
may be too much connection noise. The model achieves best
the MRR@20 score when η is set to 0.2 on Yoochoose 1/64
and 0.5 on Diginetica, respectively.

5 Related Work

Markov Chain-based SBR. Most traditional recommenda-
tion methods are designed for explicit user-item interactions,
and some have been employed for session-based recommen-
dation. Shani et al. [Shani et al., 2005] employ markov de-

3The range of similarity weight Eij in Equation 5 is (−1, 1), and
we evaluate the impact of η from 0 to 1.



cision processes (MDPs) for SBR. Rendle et al. [Rendle et
al., 2010] apply Markov chain to model the transitions over
user-item interactions and the prediction of next action based
on the recent interactions of a user. However, Markov chain-
based models suffer from one inherent limitation as they can
only capture the short-term dependencies while neglecting
the long-term dependencies in the sequence.

Deep-learning based SBR. Recently, deep neural networks
have dominated SBR and show significant improvements
over traditional recommendation approaches. Among these
architectures, RNNs achieves promising results for its natural
strength to model sequential data. By considering the ses-
sion sequence as the input of RNNs, Hidasi et al. [Hidasi et
al., 2016] apply RNN with Gated Recurrent Unit (GRU) for
SBR, which is then extended by introducing data augmenta-
tion technology [Tan et al., 2016]. Li et al. [Li et al., 2017]
take the user’s main purpose into account and propose NARM
to explore a hybrid GRU encoder with attention mechanism
to model the sequential behavior of user. To emphasize the
importance of the last-click in the session, Liu et al. [Liu et
al., 2018] propose an attention-based short-term memory net-
works (named STAMP), which uses external memory to cap-
ture user’s interests in general and his/her current interests.
Further, Song et al. [Song et al., 2019] introduce variational
autoencoder (VAE) into RNN at each timestamp to model the
interest shift of user. MCPRNs [Wang et al., 2019e] proposes
GRU-based routing networks to model multi-purpose user se-
quential behavior. RepeatNet [Ren et al., 2019] proposes
an encoder-decoder structure to model the regular habits of
user. However, RNN-based methods focus on modeling the
sequential transitions of adjacent items [Wang et al., 2019d],
which only captures the pair-wise dependencies while ignor-
ing the collective dependencies.

Recently, with the development of graph neural networks,
GNNs-based methods attract increasing attention in SBR.
SR-GNN [Wu et al., 2019] employs Gated GNN [Li et al.,
2016] to learn the item embedding from session graph and use
attentions to integrate each learnt item embedding. Follow-
ing the success of SR-GNN, GC-SAN [Xu et al., 2019] pro-
poses to combine GNNs with self attention networks (SANs)
to further improve the performance. Qiu et al. [Qiu et al.,
2019] propose FGNN which apply graph attention networks
[Veličković et al., 2018] to learn item representation. Wang
et al. [Wang et al., 2020b] propose GCE-GNN which intro-
duces global context information and reversed position vec-
tors into SBR. However, these methods ignore users’ regular
habits and the GNNs they apply is hard to capture the long-
range dependencies.

To the best of our knowledge, RepeatNet [Ren et al., 2019]
is the only work explicitly considers repeat consumption with
neural networks for SBR, which predicts the users’ repeat be-
haviors, but fails to capture item frequency (IF) information
(which has been proven that is more important than repeated
purchase pattern [Hu et al., 2020]), and cannot effectively to
capture the long-range dependencies of items within a session
(which has also been mentioned in [Liu et al., 2018] that is of
great importance for SBR). In contrast, our proposed model
converts long-term dependencies of items into similarity-

based session for learning more accurately item representa-
tion, and exploring repeated behavior patterns with item fre-
quency for modeling re-consumption actions for SBR.

6 Conclusion
In this paper, we study the problem of session-based recom-
mendation, which is a challenging but practical task. We pro-
pose a novel architecture for session-based recommendation
via leveraging repeated behavior patterns and long-term de-
pendencies of items over sessions. Specifically, we convert
sessions into repeated behavior pattern with item frequency
for predicting re-consumption actions, and build similarity-
based session graphs based on long-term item dependencies
for learning item representations more accurately. Extensive
experiments on two large-scale real world datasets, which
demonstrate that the repeated behavior pattern is effective
to improve the accuracy of predicting next re-consumption
action, and the proposed method significantly outperforms
baseline methods, indicating it can be effectively used to
solve real-world session-based recommendation problems.
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